
ARx_Func4.ag

ARx_Func4.ag ii

COLLABORATORS

TITLE :

ARx_Func4.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Func4.ag iii

Contents

1 ARx_Func4.ag 1
1.1 " . 1

1.2 ARexxGuide | Functions reference (10 of 12) | MESSAGE PORT . 1

1.3 ARexxGuide | Functions reference | Message Ports (1 of 7) | CLOSEPORT . 2

1.4 ARexxGuide | Functions reference | Message Ports (2 of 7) | GETARG . 2

1.5 ARexxGuide | Functions reference | Message Ports (3 of 7) | GETPKT . 3

1.6 ARexxGuide | Functions reference | Message Ports (4 of 7) | OPENPORT . 3

1.7 ARexxGuide | Functions reference | Message Ports (5 of 7) | REPLY . 4

1.8 ARexxGuide | Functions reference | Message Ports (6 of 7) | TYPEPKT . 4

1.9 ARexxGuide | Functions reference | Message Ports (7 of 7) | WAITPKT . 5

1.10 ARexxGuide | Functions reference (11 of 12) | LOW-LEVEL . 5

1.11 ARexxGuide | Functions reference | Low-level (1 of 13) | ALLOCMEM . 7

1.12 ARexxGuide | Functions reference | Low-level (2 of 13) | BADDR . 8

1.13 ARexxGuide | Functions reference | Low-level (3 of 13) | EXPORT . 8

1.14 ARexxGuide | Functions reference | Low-level (4 of 13) | FORBID . 9

1.15 ARexxGuide | Functions reference | Low-level (5 of 13) | FREEMEM . 10

1.16 ARexxGuide | Functions reference | Low-level (6 of 13) | FREESPACE . 10

1.17 ARexxGuide | Functions reference | Low-level (7 of 13) | GETSPACE . 11

1.18 ARexxGuide | Functions reference | Low-level (8 of 13) | IMPORT . 11

1.19 ARexxGuide | Functions reference | Low-level (9 of 13) | NEXT . 12

1.20 ARexxGuide | Functions reference | Low-level (10 of 13) | NULL . 13

1.21 ARexxGuide | Functions reference | Low-level (11 of 13) | OFFSET . 13

1.22 ARexxGuide | Functions reference | Low-level (12 of 13) | PERMIT . 14

1.23 ARexxGuide | Functions reference | Low-level (13 of 13) | STORAGE . 14

1.24 ARexxGuide | Functions reference (12 of 12) | BIT MANIPULATION . 15

1.25 ARexxGuide | Functions reference | Bit-wise (1 of 8) | BITAND . 16

1.26 ARexxGuide | Functions reference | Bit-wise (2 of 8) | BITCHG . 16

1.27 ARexxGuide | Functions reference | Bit-wise (3 of 8) | BITCLR . 17

1.28 ARexxGuide | Functions reference | Bit-wise (4 of 8) | BITCOMP . 17

1.29 ARexxGuide | Functions reference | Bit-wise (5 of 8) | BITOR . 17

1.30 ARexxGuide | Functions reference | Bit-wise (6 of 8) | BITSET . 18

1.31 ARexxGuide | Functions reference | Bit-wise (7 of 8) | BITTST . 18

1.32 ARexxGuide | Functions reference | Bit-wise (8 of 8) | BITXOR . 19

ARx_Func4.ag 1 / 19

Chapter 1

ARx_Func4.ag

1.1 "

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993,1994 Robin Evans. All rights reserved.

1.2 ARexxGuide | Functions reference (10 of 12) | MESSAGE PORT

CLOSEPORT
(<name>)

GETARG
(<packet>, [<number>])

GETPKT
(<name>)

OPENPORT
(<name>)

REPLY
(<packet>, <rc>)

TYPEPKT
(<name>)

WAITPKT
(<name>)

Also see ARexx control functions

ARx_Func4.ag 2 / 19

Message ports are the primary means of communication among the many tasks
and processes running on an Amiga. The ARexx resident process uses message
ports extensively both for its own communication with the OS and to allow
scripts to send commands to other environments.

These functions let an ARexx script set up and maintain its own message
ports. The functions do not provide the level of control possible from a
lower-level language like C, but they do allow for useful and powerful
interaction among different scripts.

Next: Low-level func. | Prev: ARexx control func. | Contents: Function ref.

1.3 ARexxGuide | Functions reference | Message Ports (1 of 7) | CLOSEPORT

a rexxsupport.library ←↩
function

rv = CLOSEPORT(<name>)
rv is a Boolean value

Closes the port opened as <name>. The port must have been opened within
the current ARexx program through a call to

OPENPORT()
.

Technique note: Use message ports in a script

Compatibility issues:
All support functions are system specific.

Next: GETARG() | Prev: VALUE() | Contents: Port mgt. func.

1.4 ARexxGuide | Functions reference | Message Ports (2 of 7) | GETARG

a rexxsupport.library ←↩
function

rv = GETARG(<packet>, [<number>])
rv is a string

Extracts a command, function name, or argument string from a message
packet. The <packet> argument must be a valid address string obtained
from a prior call to

GETPKT()
. If <number> is specified, then only the

argument in that position is extracted. <number> must be less than or
equal to the argument count for the packet.

Technique note: Use message ports in a script

Compatibility issues:

ARx_Func4.ag 3 / 19

All support functions are system specific.

Next: GETPKT() | Prev: CLOSEPORT() | Contents: Port mgt. func.

1.5 ARexxGuide | Functions reference | Message Ports (3 of 7) | GETPKT

a rexxsupport.library ←↩
function

rv = GETPKT(<name>)
rv is an address string

Returns the address string of a message packet queued at the <name>d
port. The message port must have been opened within the current ARexx
program by a call to

OPENPORT()
. If no messages are available, the

returned value will be ’0000 0000’x (which is the same as
NULL()

).

Technique note: Use message ports in a script

Also see
WAITPKT
Compatibility issues:

All support functions are system specific.

Next: OPENPORT() | Prev: GETARG() | Contents: Port mgt. func.

1.6 ARexxGuide | Functions reference | Message Ports (4 of 7) | OPENPORT

a rexxsupport.library ←↩
function

rv = OPENPORT(<name>)
rv is an address string

Creates a public message port with the specified (and case-sensitive)
<name>. A null address (’0000 0000’x) is returned if the port could not be
initialized.

Technique note: Use message ports in a script

Also see
CLOSEPORT

WAITPKT
Compatibility issues:

All support functions are system specific.

Next: REPLY() | Prev: GETPKT() | Contents: Port mgt. func.

ARx_Func4.ag 4 / 19

1.7 ARexxGuide | Functions reference | Message Ports (5 of 7) | REPLY

a rexxsupport.library ←↩
function

rv = REPLY(<packet>, <rc>)
rv is insignificant

A message packet with the primary result field set to the value given by
<rc> is sent to <packet>, which must be a valid 4-byte address (usually
obtained by a prior call to

OPENPORT()
.

Technique note: Use message ports in a script

Also see
GETPKT
Compatibility issues:

All support functions are system specific.

Next: TYPEPKT() | Prev: OPENPORT() | Contents: Port mgt. func.

1.8 ARexxGuide | Functions reference | Message Ports (6 of 7) | TYPEPKT

a rexxsupport.library ←↩
function

rv = TYPEPKT(<address>, [<mode>])
rv is a string

or a number
or a Boolean value

Although it is rarely needed in message ports handled by the current
version of ARexx, this function returns information about a message packet
received at the <address>. The <address> argument must be a valid
address string usually obtained from

WAITPKT()
.

When the <mode> option is omitted, the function returns a packed 4-byte
value, which can be unpacked to obtain information that is (with one
exception) also available by specifying a mode argument. The meaning of
each byte is explained below:

The mode arguments (which may be specified with only the first letter) are:

Mode Information provided
--------- ---
Arguments Returns the number of arguments. This information is

contained in byte 0 of the unpacked return string.

ARx_Func4.ag 5 / 19

Command Returns TRUE (1) if the packet was called as a command.
This information is contained in byte 3 of the return
string, which has a value of ’01’x for commands.

Function Returns TRUE (1) if the packet was called as a function.
This information is contained in byte 3 of the return ,
string, which has a value of ’02’x for functions.

Byte 2 of the packed return string specifies the modifier flags that
were set when the packet was called. The

REPLY()
function automatically

handles any of the modifiers set by the calling command or function.

Because a script written with the current version of ARexx cannot serve
as a reliable function host, calls to a port opened with an ARexx script
should be sent as commands (which have a single argument string by
default). That makes this function somewhat superfluous, but since it
echoes an interface function that is genuinely useful in those other
languages, it can be useful in prototyping an ARexx interface that will
be transferred to a lower-level language

Compatibility issues:
All support functions are system specific.

Next: WAITPKT() | Prev: REPLY() | Contents: Port mgt. func.

1.9 ARexxGuide | Functions reference | Message Ports (7 of 7) | WAITPKT

a rexxsupport.library ←↩
function

rv = WAITPKT(<name>)
rv is a Boolean value

Waits for a message to be received at the <name>d port which must have
been opened with a prior call to

OPENPORT()
. The function
GETPKT()

is used to retrieve the packet.

Technique note: Use message ports in a script

Compatibility issues:
All support functions are system specific.

Next: Port mgt. func. | Prev: TYPEPKT() | Contents: Port mgt. func.

1.10 ARexxGuide | Functions reference (11 of 12) | LOW-LEVEL

ARx_Func4.ag 6 / 19

ALLOCMEM
(<length>, [<attribute>])

BADDR
(<BCPL address string>)

EXPORT
(<address>, [<string>], [<length>],[<padchar>])

FORBID
()

FREEMEM
(<address>,<length>)

FREESPACE
([<address>, <length>])

GETSPACE
(<length>)

IMPORT
(<address>, [<length>])

NEXT
(<address>,[<offset>])

NULL
()

OFFSET
(<address>,<displacement>)

PERMIT
()

STORAGE
([<address>], [<string>], [<length>],[<padchar>])

Related function:
SHOWLIST

Most ARexx scripts will never need these functions since the ARexx
resident process takes care of things like the memory allocations needed
to store variable references.

The functions in this list will be familiar to those who use assembler or
C languages to program the machine since they closely parallel the
similarly-named Amiga system functions that are used extensively in those
environments. That’s probably one reason they are included in the support
library. They provide a useful tool for prototyping a program -- a way
to write an early version of a program in ARexx, an interpreted language
that allows quick and simple changes and has powerful debugging tools.
These support functions allow a programmer to test program logic and
effectiveness in ARexx before committing the code to a compiled language.

ARx_Func4.ag 7 / 19

With care, they may also be used in any ARexx script that needs special
access to aspects of the OS not normally available in ARexx. Note, though,
that these are the most dangerous functions included in the ARexx package
since many of them circumvent the checks and balances usually provided by
the ARexx resident process.

The address string
~~~~~~~~~~~~~~~~~~
The <address> argument used by many of these functions must be a 4-byte
address string. This is a four-character string and not a number as might
be used in other languages. Use the c2x() or c2d() functions to
translate the <address> into more readable form. (See note at

OFFSET()
about computing new addresses with the character translation ←↩

functions.)

The Amiga ROM Kernal Manuals explain in detail the system functions called
by these ARexx functions. The Sullivan & Zamara book, Using ARexx on the
Amiga is recommended reading for those who want more information about how
these functions can be used in ARexx scripts.

Next: Bit-wise func. | Prev: Port mgt. func. | Contents: Function ref.

1.11 ARexxGuide | Functions reference | Low-level (1 of 13) | ALLOCMEM

a rexxsupport.library ←↩
function

rv = ALLOCMEM(<length>, [<attribute>])
rv is an address string

Allocates a block of memory of the specified <length> from the system
free-memory pool.

<attribute> may be any of the standard flags used with the Exec AllocMem
function, but must be supplied as a four-byte string. The default is public
(MEMF_PUBLIC).

Example:
addr = allocmem(32);
call

freemem(addr,32)
;

This support function calls the OS AllocMem() function. Care should be
taken in using it since ARexx performs no special checks and will not
automatically deallocate the memory block when the program exits.

Also see
GETSPACE
Compatibility issues:

All support functions are system specific.

Next: BADDR() | Prev: Low-level func. | Contents: Low-level func.



ARx_Func4.ag 8 / 19

1.12 ARexxGuide | Functions reference | Low-level (2 of 13) | BADDR

a rexxsupport.library function
rv = BADDR(<BCPL address string>)

rv is an address_string

Converts a BPTR to an CPTR address.

Compatibility issues:
All support functions are system specific.

Next: EXPORT() | Prev: ALLOCMEM() | Contents: Low-level func.

1.13 ARexxGuide | Functions reference | Low-level (3 of 13) | EXPORT

a rexxsupport.library ←↩
function

rv = EXPORT(<address>, [<string>], [<length>],[<padchar>])
rv is a number

Copies data from the optional <string> into the area starting at
<address>. Sufficient memory should have been previously allocated with a
call to

ALLOCMEM()
or
GETSPACE()

.

If <string> is shorter than <length>, then the <padchar> (which defaults
to a null) will be used to fill out the space.

The value returned is the number of bytes written to memory. A pointer to
the new address can be obtained by adding the value returned to the
current address using

OFFSET()
.

Example:
/* copies a file from disk and stores it in memory **
** A file, ’Input’, must have been opened previously, and an **
** address [CurAddr] obtained through

getspace()
. */

do until eof(’Input’)
/* readch() reads the file, either the whole thing, or **
** the first 64k bytes **
** export() stores value returned by readch() in memory. **
** offset() computes the next address based on the return **
** from export(). */

CurAddr = offset(CurAddr, export(CurAddr,readch(’Input’,65535)))



ARx_Func4.ag 9 / 19

end

Also see
STORAGE

IMPORT
Compatibility issues:

All support functions are system specific.

Next: FORBID() | Prev: BADDR() | Contents: Low-level func.

1.14 ARexxGuide | Functions reference | Low-level (4 of 13) | FORBID

a rexxsupport.library ←↩
function

rv = FORBID()
rv is a number

Task switching can be controlled by calls to FORBID() and
PERMIT()

. The
return value is the current nesting count which is -1 when task-switching
is enabled. Since ARexx scripts run as separate tasks, no harm is done if
the program ends with task switching forbidden, but it is good practice to
enable multitasking as quickly as possible.

This function should be used whenever items are read from the various
system lists since, if multitasking is enabled, another task might cause a
change in the list while it is being read by the ARexx script. The Amiga
ROM Kernal Manauls warn, "To access these lists without forbidding
jeopardizes the integrity of the entire system." The warning applies to
any language, so this is not something unique to ARexx.

The interpreter will handle calls to forbid() and permit() when the
SHOWLIST() function is used.

All forms of I/O should be avoided while FORBID() is in effect, since
any kind of I/O (including instructions like SAY and PULL , or
functions like

WAITPKT()
and OPEN() ) will cause the system to wait for

I/O completion and to disable the forbidden state while it waits.

See example at
IMPORT()

Technique note: Determine library version number

Compatibility issues:
All support functions are system specific.

Next: FREEMEM() | Prev: EXPORT() | Contents: Low-level func.



ARx_Func4.ag 10 / 19

1.15 ARexxGuide | Functions reference | Low-level (5 of 13) | FREEMEM

a rexxsupport.library ←↩
function

rv = FREEMEM(<address>,<length>)
rv is a Boolean value

Releases the block of memory of <length> (an integer) size at <address>
to the system freelist. <address> must be a valid 4-byte address, usually
obtained by a prior call to

ALLOCMEM()
.

Example:
addr = allocmem(32);
call freemem(addr,32);

Also see
FREESPACE
Compatibility issues:

All support functions are system specific.

Next: FREESPACE() | Prev: FORBID() | Contents: Low-level func.

1.16 ARexxGuide | Functions reference | Low-level (6 of 13) | FREESPACE

a rexxsupport.library ←↩
function

rv = FREESPACE([<address>, <length>])
rv is a Boolean value

or a number

Releases to the internal pool maintained by the interpreter the block of
memory of <length> (an integer) size at <address> (which should have been
obtained through a previous call to

GETSPACE()
) . If called without

arguments, the function returns the amount of memory available in the
interpreter’s internal pool.

The interpreter will release the memory when a script ends even if this
function is not called.

Also see
FREEMEM
Compatibility issues:

All support functions are system specific.

Next: GETSPACE() | Prev: FREEMEM() | Contents: Low-level func.



ARx_Func4.ag 11 / 19

1.17 ARexxGuide | Functions reference | Low-level (7 of 13) | GETSPACE

a rexxsupport.library ←↩
function

rv = GETSPACE(<length>)
rv is an address string

Allocates a block of memory of <length> size (a decimal number) from the
interpreter’s internal pool.

The memory is automatically returned to the system when the ARexx script
that calls this function terminates.

Example:
/**/
MemWant = 19764

/* Is there enough memory for the allocation? */
if storage() > MemWant then

StoreAddress = getspace(MemWant)
else

say ’Not enough memory.

Also see
FREESPACE

ALLOCMEM

STORAGE
Compatibility issues:

All support functions are system specific.

Next: IMPORT() | Prev: FREESPACE() | Contents: Low-level func.

1.18 ARexxGuide | Functions reference | Low-level (8 of 13) | IMPORT

a rexxsupport.library ←↩
function

rv = IMPORT(<address>, [<length>])
rv is a string

A string of <length> (an integer) bytes is returned. It is copied from
memory starting at the specified <address> (which must be specified as a
4-byte address string. If <length> is not specified, values will be copied
until a null byte is encountered.

Example:
/* Imports name and size of default font */

gfxbase=showlist(l, ’graphics.library’,,a)
call forbid
FntAddr = next(gfxbase,154)
DefFont = IMPORT(next(FntAddr, 10))
FSize = c2d(IMPORT(offset(FntAddr, 20),2))
call permit



ARx_Func4.ag 12 / 19

Also see
EXPORT

SHOWLIST

NEXT

OFFSET

FORBID

PERMIT
Technique note: Determine library version number

Compatibility issues:
All support functions are system specific.

Next: NEXT() | Prev: GETSPACE() | Contents: Low-level func.

1.19 ARexxGuide | Functions reference | Low-level (9 of 13) | NEXT

a rexxsupport.library ←↩
function

rv = NEXT(<address>,[<offset>])
rv is an address string

Returns the 4-byte address string at <address> plus <offset>. The function
combines features of

import()
and
offset()

. Like import(), it reads a
value from memory, but is designed for the specific task obtaining an
address. Like offset(), it will, when given a decimal offset, calculate a
new address in the proper format.

A linked-list maintained by the operating system can be followed by using
the following format:

NextNode = NEXT(<node-address>)
PrevNode = NEXT(<node-address>, 4).

See example at
IMPORT()

Also see
OFFSET

The base address of most system resources can be obtained with the
SHOWLIST() function, using its fourth ’Address’ argument.

Compatibility issues:
All support functions are system specific.

Next: NULL() | Prev: IMPORT() | Contents: Low-level func.



ARx_Func4.ag 13 / 19

1.20 ARexxGuide | Functions reference | Low-level (10 of 13) | NULL

a rexxsupport.library ←↩
function

rv = NULL()
rv is an address string

The result is a null pointer as a 4-byte string (’0000 0000’x).

Also see
OFFSET

Technique note: Use message ports in a script

Compatibility issues:
All support functions are system specific.

Next: OFFSET() | Prev: NEXT() | Contents: Low-level func.

1.21 ARexxGuide | Functions reference | Low-level (11 of 13) | OFFSET

a rexxsupport.library ←↩
function

rv = OFFSET(<address>,<displacement>)
rv is an address string

Computes a new address as the signed offset from a base address.

<address> must be a valid 4-byte address string. <displacement> must be an
integer in decimal (not hexadecimal) form.

This function will compute the address of a field in a data structure
without requiring calls to C2D() and D2C() , and does so in a safer way
since -- unlike the return value of the translation functions -- the value
returned by offset() will always be a 4-byte address string.

Example:
say c2x(offset(’0000 0000’x,4)) >>> 00000676

See example at
IMPORT()

Also see
NEXT

NULL
C2X

Technique note: Determine library version number

Compatibility issues:



ARx_Func4.ag 14 / 19

All support functions are system specific.

Next: PERMIT() | Prev: NULL() | Contents: Low-level func.

1.22 ARexxGuide | Functions reference | Low-level (12 of 13) | PERMIT

a rexxsupport.library ←↩
function

rv = PERMIT()
rv is a number

Lowers by one the nesting count of
FORBID()
and returns the current

nesting count.

Each call to FORBID() will raise the nesting count by 1 from its base
count of -1. When the count reaches -1 after successive calls to FORBID()
and PERMIT(), multitasking will be possible once again.

If a task (a script) ends in a forbidden state, no harm is done since the
state is cleared automatically when the task ends, but it is good practice
to call PERMIT() as quickly as possible after entering a forbidden state.

See example at
IMPORT()

Technique note: Determine library version number

Compatibility issues:
All support functions are system specific.

Next: STORAGE() | Prev: OFFSET() | Contents: Low-level func.

1.23 ARexxGuide | Functions reference | Low-level (13 of 13) | STORAGE

a rexxsupport.library ←↩
function

rv = STORAGE([<address>], [<string>], [<length>],[<padchar>])
rv is a number

If all arguments are omitted, the function returns the amount of free
memory in the system.

If <address> is given (as a valid 4-byte address string ) then data from
<string> will be copied to that address for <length> (an integer) bytes. If
<string> is shorter than <length>, then the space will be filled with
<padchar>.

The default pad character is a null.



ARx_Func4.ag 15 / 19

Examples:
say storage() >>> 7121608

Also see
EXPORT

IMPORT
Compatibility issues:

All support functions are system specific.

Next: Low-level func. | Prev: PERMIT() | Contents: Low-level func.

1.24 ARexxGuide | Functions reference (12 of 12) | BIT MANIPULATION

BITAND
(<string1>,<string2>, [<padchar>])

BITCHG
(<string>, <bit>)

BITCLR
(<string>, <bit>)

BITCOMP
(<string>,<string2>,[<padchar>])

BITOR
(<string1>,[<string2>],[<padchar>])

BITSET
(<string>, <bit>)

BITTST
(<string>, <bit>)

BITXOR
(<string1>,<string2>,[<padchar>])

Also see Comparison functions
Number manipulation functions

The primary argument to each of these functions, and the value returned
by most of them is a character or character string. The functions work at
the low bit-level so familiar to those who program in assembly language.
The binary representation of the character ’a’, for example, is ’01100001’
in the ASCII character set which can be expressed as ’01100001’b or as
c2b(’a’). The function BITSET() can change just one bit in that ’field’.
BITSET(’a’, 1) will return ’c’ -- the character with the binary
representation of ’01100011’.

A string 0’s and 1’s is not a proper argument to any of these functions
since the 0 would be interpreted as ASCII character 48 (decimal) or
00110000 (binary). Using a binary string , on the other hand, will cause



ARx_Func4.ag 16 / 19

the 0’s and 1’s to be translated to the character representation expected
by the functions.

Compatibility issues :
Some examples in the following nodes use alphabetic characters to show
how a function works. The results shown here are valid only for the
ASCII character set. Since REXX was developed and is still used largely
on systems that use a different character set, such examples are
frowned upon in the REXX standard.

Next: Function ref. | Prev: Low-level func. | Contents: Function ref.

1.25 ARexxGuide | Functions reference | Bit-wise (1 of 8) | BITAND

rv = BITAND(<string1>,<string2>, [<padchar>])
rv is a string

The result is equal to the length of longer of the two supplied strings
which are logically AND’ed together bit by bit. If a pad character is
supplied, then the shorter string is filled out with that character until
it is the same length as the other string.

The default <padchar> is the null character.

Examples:
say bitand(’A’, ’J’) >>> @
say bitand(’01000001’b, ’01001010’b) >>> @
say c2b(bitand(’01000001’b, ’01001010’b)) >>> 01000000

Next: BITCHG() | Prev: Bit-wise func. | Contents: Bit-wise func.

1.26 ARexxGuide | Functions reference | Bit-wise (2 of 8) | BITCHG

rv = BITCHG(<string>, <bit>)
rv is a string

The state of the specified <bit> in <string> is changed. Bit 0 is is the
low-order bit of the rightmost byte of the string.

Examples:
/**/
say bitchg(’a’, 5) >>> A
say bitchg(’A’, 5) >>> a
say c2b(bitchg(’01101100’b, 3)) >>> 01100100

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: BITCLR() | Prev: BITAND() | Contents: Bit-wise func.



ARx_Func4.ag 17 / 19

1.27 ARexxGuide | Functions reference | Bit-wise (3 of 8) | BITCLR

rv = BITCLR(<string>, <bit>)
rv is a string

The specified <bit> in <string> is cleared (set to 0). Bit 0 is is the
low-order bit of the rightmost byte of the string.

Examples:
/**/
say bitclr(’a’, 5) >>> A
say bitclr(’A’, 5) >>> A
say c2b(bitchg(’01101100’b, 3)) >>> 01100100

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: BITCOMP() | Prev: BITCHG() | Contents: Bit-wise func.

1.28 ARexxGuide | Functions reference | Bit-wise (4 of 8) | BITCOMP

rv = BITCOMP(<string>,<string2>,[<padchar>])
rv is a number

The result indicates the first position of the bit at which the two
supplied strings differ or -1 if they are the same. The shorter string
is padded with <padchar> before the comparison.

The default pad character is a null.

Examples:
say bitcomp(’0011’b, ’0111’b) >>> 2
say bitcomp(’c’, ’C’) >>> 5
say bitcomp(’b’, ’B’) >>> 5
say bitcomp(’0a’x, ’1a’x) >>> 4

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: BITOR() | Prev: BITCLR() | Contents: Bit-wise func.

1.29 ARexxGuide | Functions reference | Bit-wise (5 of 8) | BITOR

rv = BITOR(<string1>,[<string2>],[<padchar>])
rv is a string

The result is equal to the length of longer of the two supplied strings
which are logically (inclusively) OR’ed together bit by bit. If a pad



ARx_Func4.ag 18 / 19

character is supplied, then the shorter string is filled out with that
character until it is the same length as the other string.

The default <padchar> is the null character.

Example:
say bitor(’A’, ’J’) >>> K
say bitor(’01000001’b, ’01001010’b) >>> K
say bitor(’Amiga FOREVER’) >>> amiga forever
say bitor(’FRANÇOIS’) >>> françios
say bitor(’THIS_THAT’) >>> thisthat

It is unsafe to use bitor() for character translation since characters
like ‘[’ and ‘_’ (ASCII 91 to 96) that come between ‘Z’ and ‘a’ in the
ASCII set are treated improperly. The TRANSLATE() function provides a
safe way to implement a user-defined lower() function.

Next: BITSET() | Prev: BITCOMP() | Contents: Bit-wise func.

1.30 ARexxGuide | Functions reference | Bit-wise (6 of 8) | BITSET

rv = BITSET(<string>, <bit>)
rv is a string

The specified <bit> in <string> is set to 1.

Examples:
say bitset(’A’, 5) >>> a
say bitset(’00101’b, 3)
say c2b(bitset(’0000101’b, 3)) >>> 00001101

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: BITTST() | Prev: BITOR() | Contents: Bit-wise func.

1.31 ARexxGuide | Functions reference | Bit-wise (7 of 8) | BITTST

rv = BITTST(<string>, <bit>)
rv is a Boolean value

The result indicates the state of the specified <bit> in <string>.

Examples:
"say bittst(’00001001’b, 3) >>> 1 (True)
"say bittst(’00001001’b, 1) >>> 0 (False)

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,



ARx_Func4.ag 19 / 19

there is no assurance that it will be.

Next: BITXOR() | Prev: BITSET() | Contents: Bit-wise func.

1.32 ARexxGuide | Functions reference | Bit-wise (8 of 8) | BITXOR

rv = BITXOR(<string1>,<string2>,[<padchar>])
rv is a string

The result is equal to the length of longer of the two supplied strings
which are logically (exclusively) OR’ed together bit by bit. If a pad
character is supplied, then the shorter string is filled out with that
character until it is the same length as the other string.

The default <padchar> is the null character.

Examples:
say c2b(bitxor(’00001101’b, ’01000101’b)) >>> 01001000
say bitxor(’00001101’b, ’01000101’b) >>> H
say c2b(bitxor(’A’, ’J’)) >>> 00001011

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: Bit-wise func. | Prev: BITTST() | Contents: Bit-wise func.


	ARx_Func4.ag
	"
	ARexxGuide | Functions reference (10 of 12) | MESSAGE PORT
	ARexxGuide | Functions reference | Message Ports (1 of 7) | CLOSEPORT
	ARexxGuide | Functions reference | Message Ports (2 of 7) | GETARG
	ARexxGuide | Functions reference | Message Ports (3 of 7) | GETPKT
	ARexxGuide | Functions reference | Message Ports (4 of 7) | OPENPORT
	ARexxGuide | Functions reference | Message Ports (5 of 7) | REPLY
	ARexxGuide | Functions reference | Message Ports (6 of 7) | TYPEPKT
	ARexxGuide | Functions reference | Message Ports (7 of 7) | WAITPKT
	ARexxGuide | Functions reference (11 of 12) | LOW-LEVEL
	ARexxGuide | Functions reference | Low-level (1 of 13) | ALLOCMEM
	ARexxGuide | Functions reference | Low-level (2 of 13) | BADDR
	ARexxGuide | Functions reference | Low-level (3 of 13) | EXPORT
	ARexxGuide | Functions reference | Low-level (4 of 13) | FORBID
	ARexxGuide | Functions reference | Low-level (5 of 13) | FREEMEM
	ARexxGuide | Functions reference | Low-level (6 of 13) | FREESPACE
	ARexxGuide | Functions reference | Low-level (7 of 13) | GETSPACE
	ARexxGuide | Functions reference | Low-level (8 of 13) | IMPORT
	ARexxGuide | Functions reference | Low-level (9 of 13) | NEXT
	ARexxGuide | Functions reference | Low-level (10 of 13) | NULL
	ARexxGuide | Functions reference | Low-level (11 of 13) | OFFSET
	ARexxGuide | Functions reference | Low-level (12 of 13) | PERMIT
	ARexxGuide | Functions reference | Low-level (13 of 13) | STORAGE
	ARexxGuide | Functions reference (12 of 12) | BIT MANIPULATION
	ARexxGuide | Functions reference | Bit-wise (1 of 8) | BITAND
	ARexxGuide | Functions reference | Bit-wise (2 of 8) | BITCHG
	ARexxGuide | Functions reference | Bit-wise (3 of 8) | BITCLR
	ARexxGuide | Functions reference | Bit-wise (4 of 8) | BITCOMP
	ARexxGuide | Functions reference | Bit-wise (5 of 8) | BITOR
	ARexxGuide | Functions reference | Bit-wise (6 of 8) | BITSET
	ARexxGuide | Functions reference | Bit-wise (7 of 8) | BITTST
	ARexxGuide | Functions reference | Bit-wise (8 of 8) | BITXOR


